El sistema nervioso autónomo y la médula suprarrenal

Sistema Nervioso Autónomo: Anatomía, Funciones y Trastornos - Lifeder

El sistema nervioso autónomo es la porción del sistema nervioso que controla la mayoría de las funciones viscerales del cuerpo. Este componente interviene en la regulación de la presión arterial, la motilidad digestiva, las secreciones gastrointestinales, el vaciamiento de la vejiga urinaria, la
sudoración, la temperatura corporal y otras muchas actividades.
Una de las características más sorprendentes del sistema nervioso autónomo es la rapidez y la intensidad con la que puede variar las funciones viscerales. Por ejemplo, en un plazo de 3 a 5 s es posible duplicar la frecuencia cardíaca sobre su nivel normal, y en 10 a 15 s hacerlo con la presión
arterial. En el polo opuesto, reducir la última variable citada lo suficiente en este tiempo como para causar un desmayo. La sudoración puede empezar en cuestión de segundos y la vejiga urinaria vaciarse involuntariamente en un tiempo también similar.

Organización general del sistema nervioso autónomo
El sistema nervioso autónomo se activa sobre todo a partir de centros situados en la médula espinal, el tronco del encéfalo y el hipotálamo. Asimismo, ciertas porciones de la corteza cerebral, sobre todo
de la corteza límbica, pueden transmitir señales hacia los centros inferiores e influir de este modo en el control autónomo.
El sistema nervioso autónomo también suele operar por medio de reflejos viscerales. Es decir, las señales sensitivas subconscientes procedentes de órganos viscerales pueden llegar a los ganglios autónomos, el tronco del encéfalo o el hipotálamo, y a continuación devolver unas respuestas reflejas
subconscientes directamente a los órganos viscerales para controlar su actividad. Las señales autónomas eferentes se transmiten hacia los diversos órganos del cuerpo a través de sus dos componentes principales, denominados sistema nervioso simpático y sistema nervioso parasimpático.

Características básicas del funcionamiento simpático y parasimpático
Fibras colinérgicas y adrenérgicas: secreción de acetilcolina o de noradrenalina
Las fibras nerviosas simpáticas y parasimpáticas segregan básicamente una de las dos sustancias transmisoras de la sinapsis, acetilcolina o noradrenalina. Las fibras que liberan acetilcolina se llaman
colinérgicas. Las que emiten noradrenalina se llaman adrenérgicas.
Todas las neuronas preganglionares son colinérgicas tanto en el sistema nervioso simpático como en el parasimpático. La acetilcolina o las sustancias semejantes, al aplicarlas a los ganglios, excitarán las neuronas posganglionares tanto simpáticas como parasimpáticas. Todas o casi todas las neuronas posganglionares del sistema parasimpático también son colinérgicas. En cambio, la mayoría de las neuronas posganglionares simpáticas son adrenérgicas. Sin embargo, las fibras nerviosas simpáticas
posganglionares dirigidas a las glándulas sudoríparas y, tal vez, a un número muy escaso de vasos sanguíneos son colinérgicas.
Así pues, todas o prácticamente todas las terminaciones nerviosas finales del sistema parasimpático segregan acetilcolina. Por el contrario, casi todas las terminaciones nerviosas simpáticas segregan noradrenalina, pero unas pocas segregan acetilcolina. Estos neurotransmisores,
a su vez, actúan sobre los distintos órganos para generar los efectos simpáticos o parasimpáticos respectivos. Por tanto, a la acetilcolina se la denomina transmisor parasimpático y a la noradrenalina transmisor simpático.
La estructura molecular de la acetilcolina y la noradrenalina es la siguiente:

Noradrenalina - Wikipedia, la enciclopedia libre
NORADRENALINA
Acetilcolina - Tu Guía de Suplementos Naturales
ACETILCOLINA

Mecanismos para la secreción de los transmisores y su eliminación en las terminaciones posganglionares
Secreción de acetilcolina y noradrenalina por las terminaciones nerviosas
posganglionares

Unas cuantas terminaciones nerviosas autónomas posganglionares, sobre todo las de los nervios parasimpáticos, son semejantes a las de la unión neuromuscular esquelética, pero mucho más pequeñas. Sin embargo, muchas de las fibras nerviosas parasimpáticas y casi todas las simpáticas se
limitan meramente a rozar las células efectoras de los órganos inervados a su paso por ellos; o, en algunos casos, terminan en el tejido conjuntivo que ocupa un lugar adyacente a las células que vayan a ser activadas. En el punto donde estos filamentos tocan o pasan sobre las células estimuladas o en su proximidad suelen presentar unas dilataciones bulbosas llamadas varicosidades; es en estas varicosidades donde se sintetizan y almacenan las vesículas transmisoras de la acetilcolina o la noradrenalina. También en las varicosidades hay una gran cantidad de mitocondrias que proporcionan el trifosfato de adenosina necesario para activar la síntesis de acetilcolina y
noradrenalina.
Cuando un potencial de acción se propaga hasta las fibras terminales, el proceso de despolarización aumenta la permeabilidad a los iones calcio en la membrana de la fibra, lo que permite la difusión de estos iones hacia las terminales o las varicosidades nerviosas. Los iones calcio a su vez hacen que las terminales o las varicosidades viertan su contenido al exterior. De este modo se segrega la sustancia transmisora.
Síntesis de acetilcolina, destrucción después de su secreción y duración de su acción
La acetilcolina se sintetiza en las terminaciones finales y en las varicosidades de las fibras nerviosas colinérgicas, donde se almacena en vesículas a una gran concentración hasta que se libera. La reacción química básica de esta síntesis es la siguiente:

AcetilcoA+colina ——-> Acetilcolina

Una vez que la acetilcolina se segrega a un tejido a partir de una terminación nerviosa colinérgica, persiste en él unos pocos segundos mientras cumple la función de transmitir la señal nerviosa. A continuación, se escinde en un ion acetato y colina, proceso catalizado por la enzima acetilcolinesterasa que está unida al colágeno y los glucosaminoglucanos en el tejido conjuntivo
local. Este mecanismo es el mismo que ocurre en las uniones neuromusculares de las fibras nerviosas esqueléticas para la transmisión de la señal colinérgica y la posterior destrucción de la acetilcolina. Después, la colina formada se transporta de nuevo hasta la terminación nerviosa, donde
vuelve a utilizarse una y otra vez para la síntesis de nueva acetilcolina.


Receptores de los órganos efectores

Antes de que la acetilcolina, la noradrenalina o la adrenalina segregadas en una terminación nerviosa autónoma puedan estimular un órgano efector, primero deben unirse a sus receptores específicos en las células correspondientes. El receptor está situado en el exterior de la membrana celular, ligado como un grupo prostético a una molécula proteica que atraviesa toda la membrana celular. La fijación de la sustancia transmisora al receptor provoca un cambio de configuración en la estructura de la molécula proteica. A su vez, por regla general, la molécula modificada excita o inhibe a la célula:

1) causando un cambio en la permeabilidad de la membrana celular frente a uno o más iones,
2) activando o inactivando una enzima ligada al otro extremo de la proteína receptora donde sobresale hacia el interior de la célula.
Excitación o inhibición de la célula efectora mediante un cambio en la permeabilidad de su membrana
Dado que la proteína receptora forma parte integrante de la membrana celular, cualquier cambio en la configuración de su estructura normalmente abre o cierra un canal iónico a través de los
intersticios de la molécula proteica, modificando la permeabilidad de la membrana celular frente a los diversos iones. Por ejemplo, los canales iónicos para el sodio o para el calcio suelen quedar abiertos y dejan entrar rápidamente sus iones respectivos en la célula, lo que normalmente
despolariza la membrana celular y excita a la célula. En otras ocasiones se abren los canales de potasio, para permitir la difusión de dichos iones fuera de la célula, lo que suele inhibirla debido a que la pérdida de iones potasio electropositivos crea una hipernegatividad en su interior. En algunos
casos, el medio iónico intracelular modificado suscitará una acción celular interna, como el efecto directo que ejercen los iones calcio para favorecer la contracción del músculo liso.

Acción receptora mediante la modificación de enzimas intracelulares como «segundo mensajero»
Otro modo de funcionamiento habitual en los receptores consiste en activar o inactivar una enzima (u otro producto intracelular) dentro de la célula. La enzima suele estar ligada a la proteína receptora en el punto en que el receptor sobresale hacia la parte interna de la célula. Por ejemplo, la unión de la noradrenalina a su receptor en el exterior de muchas células aumenta la actividad de la enzima adenilato ciclasa dentro de la célula, lo que produce la formación de monofosfato de adenosina cíclico (AMPc). El AMPc a su vez puede poner en marcha cualquiera de las numerosas acciones intracelulares diferentes, cuyo efecto exacto depende de la célula efectora específica y de su maquinaria química.
No es difícil entender cómo una sustancia transmisora autónoma es capaz de causar una inhibición en algunos órganos o una excitación en otros. Esto suele venir determinado por la naturaleza de la proteína receptora presente en la membrana celular y el efecto que produce la unión al receptor sobre
la configuración de su estado. En cada órgano es probable que las acciones resultantes sean diferentes de las que suceden en otros.
Dos tipos principales de receptores para la acetilcolina:
receptores muscarínicos y nicotínicos
La acetilcolina activa sobre todo dos tipos de receptores, que reciben la denominación de receptores muscarínicos y nicotínicos. La razón de estos nombres radica en que la muscarina, un producto tóxico de las setas, solo activa los receptores muscarínicos y no los nicotínicos, mientras que la
nicotina solo activa los nicotínicos. La acetilcolina estimula ambos.
Los receptores muscarínicos, que usan proteínas G como mecanismo de señalización, están presentes en todas las células efectoras estimuladas por las neuronas colinérgicas posganglionares del sistema nervioso parasimpático, así como del sistema simpático.
Los receptores nicotínicos son canales iónicos activados por ligando que se observan en los ganglios autónomos, a nivel de las sinapsis entre las neuronas preganglionares y las posganglionares de los sistemas simpático y parasimpático.


El conocimiento de los dos tipos de receptores resulta especialmente importante porque a menudo se emplean fármacos específicos como medicamentos para estimular o bloquear uno u otro.
Receptores adrenérgicos: receptores α y β
También hay dos clases de receptores adrenérgicos; se denominan receptores α y receptores β.
Existen dos tipos principales de receptores α, α1 y α2, que se unen a diferentes proteínas G. Los receptores β se dividen en receptores β1, β2 y β3 porque determinados productos químicos no actúan más que sobre alguno de ellos. Los receptores β también utilizan proteínas G para la señalización.
La noradrenalina y la adrenalina, ambas segregadas a la sangre por la médula suprarrenal, poseen unos efectos un poco diferentes sobre la excitación de los receptores α y β. La noradrenalina estimula sobre todo los receptores α, pero también los receptores β, aunque en menor grado. La adrenalina activa ambos tipos de receptores aproximadamente por igual. Por tanto, los efectos relativos de la noradrenalina y la adrenalina sobre los diversos órganos efectores están determinados por los tipos de receptores que posean. Si todos son receptores β, la adrenalina será más eficaz en su acción excitadora.

Función de la médula suprarrenal
La estimulación de la médula suprarrenal por parte de los nervios simpáticos hace que se libere una gran cantidad de adrenalina y noradrenalina a la circulación sanguínea, y estas dos hormonas a su vez se transportan por la sangre hasta todos los tejidos del cuerpo. Como promedio, más o menos el 80% de la secreción corresponde a adrenalina y el 20% a noradrenalina, aunque sus proporciones relativas pueden cambiar considerablemente en diferentes condiciones fisiológicas.
La adrenalina y la noradrenalina circulantes ejercen casi las mismas acciones sobre los diversos órganos que las ocasionadas por la estimulación simpática directa, excepto que sus efectos duran de 5 a 10 veces más debido a que estas dos hormonas desaparecen de la sangre con lentitud en un plazo de 2 a 4 min.
La noradrenalina circulante produce la contracción de la mayoría de todos los vasos sanguíneos del cuerpo; también aumenta la actividad cardíaca, inhibe el tubo digestivo, dilata las pupilas oculares, etc.
La adrenalina provoca casi los mismos efectos que la noradrenalina, pero sus acciones difieren en los siguientes aspectos. En primer lugar, debido a su acción estimuladora más acusada sobre los receptores β produce una mayor activación cardíaca que la noradrenalina. En segundo lugar, la
adrenalina no causa más que una débil contracción de los vasos sanguíneos a nivel de los músculos, en comparación con la contracción mucho más potente a cargo de la noradrenalina. Dado que los vasos musculares representan un componente fundamental en el conjunto del cuerpo, esta diferencia posee una importancia especial debido a que la noradrenalina eleva mucho la resistencia periférica total y la presión arterial, mientras que la adrenalina sube la presión arterial en menor magnitud, pero aumenta más el gasto cardíaco.
Una tercera diferencia entre las acciones de la adrenalina y la noradrenalina está relacionada con sus consecuencias sobre el metabolismo tisular. La adrenalina ejerce un efecto metabólico de 5 a 10 veces mayor que la noradrenalina. En realidad, su secreción por la médula suprarrenal muchas veces puede elevar el índice metabólico de todo el cuerpo hasta un 100% por encima de lo normal, lo que incrementa así la actividad y la excitabilidad del organismo. También acelera las tasas de otros procesos metabólicos, como la glucogenólisis hepática y muscular, y la liberación de glucosa a la sangre.

En resumen, la estimulación de la médula suprarrenal da lugar a la liberación de las hormonas adrenalina y noradrenalina, que en conjunto poseen casi los mismos efectos por todo el organismo que la estimulación simpática directa, excepto por su duración mucho más prolongada, que se extiende de 2 a 4 min después de haber finalizado la estimulación.


Valor de la médula suprarrenal para el funcionamiento del sistema nervioso simpático
La adrenalina y la noradrenalina casi siempre se liberan de la médula suprarrenal al mismo tiempo que se excitan los diversos órganos directamente por la activación simpática generalizada. Por tanto, en realidad estas estructuras resultan estimuladas por dos vías: la directa a través de los nervios simpáticos y la indirecta a través de las hormonas de la médula suprarrenal. Los dos medios de estimulación se potencian entre sí y, en la mayoría de los casos, uno puede sustituir al otro. Por ejemplo, la destrucción de las vías simpáticas directas que van hacia los distintos órganos corporales
no anula su excitación simpática debido a la noradrenalina y la adrenalina que todavía se liberan hacia la circulación sanguínea y producen una estimulación indirecta.

En este mismo sentido, la desaparición de las dos médulas suprarrenales suele ejercer pocos efectos sobre el funcionamiento del sistema nervioso simpático debido a que las vías directas aún pueden realizar casi todas las tareas necesarias. Por tanto, el mecanismo doble de la estimulación simpática aporta un factor de seguridad, la sustitución de un método por otro en caso de que falte uno de ellos.
Otro valor importante a cargo de la médula suprarrenal es la capacidad de la adrenalina y la noradrenalina para estimular las estructuras del cuerpo que no están inervadas por fibras simpáticas directas. Por ejemplo, estas hormonas elevan el índice metabólico de casi todas las células del
organismo, especialmente la adrenalina, aunque solo una pequeña proporción de todas ellas recibe una inervación directa de las fibras simpáticas.

Relación de la frecuencia de estimulación con la magnitud del efecto simpático y parasimpático
Una diferencia especial entre el sistema nervioso autónomo y el sistema nervioso esquelético radica en que tan solo hace falta una frecuencia de estimulación baja para lograr una activación plena de los
efectores autónomos. En general, un solo impulso nervioso cada pocos segundos basta para mantener el efecto simpático o parasimpático normal, y la activación total se alcanza cuando las fibras nerviosas descargan de 10 a 20 veces por segundo. Este valor contrasta con el funcionamiento
máximo del sistema nervioso esquelético que se produce a 50 a 500 impulsos por segundo o más.
«Tono» simpático y parasimpático
Normalmente, los sistemas simpático y parasimpático están constantemente activos, y sus tasas basales de funcionamiento se conocen, respectivamente, como tono simpático y tono parasimpático.
El valor de este factor reside en permitir que un solo sistema nervioso aumente o disminuya la actividad de un órgano estimulado. Por ejemplo, el tono simpático normalmente mantiene casi todas las arteriolas sistémicas contraídas más o menos hasta la mitad de su diámetro máximo. Si el grado
de estimulación simpática aumenta por encima de su valor normal, estos vasos pueden contraerse aún más; por el contrario, si desciende por debajo de ese nivel, las arteriolas pueden dilatarse. Si no fuera por el tono simpático continuo de fondo, el sistema simpático solo sería capaz de ocasionar una
vasoconstricción, nunca una vasodilatación.
Otro ejemplo interesante en relación con esta propiedad es el «tono» de base del parasimpático en el tubo digestivo. La extirpación quirúrgica de la inervación parasimpática de la mayor parte del intestino cuando se cortan los nervios vagos puede ocasionar una «atonía» gástrica e intestinal grave
y prolongada, con el bloqueo resultante de gran parte de la propulsión gastrointestinal normal y el grave estreñimiento correspondiente, lo que pone de manifiesto que habitualmente el tono parasimpático del intestino resulta muy necesario. El encéfalo puede disminuir este tono e inhibir así la motilidad digestiva, o aumentarlo, para favorecer una actividad gastrointestinal mayor.
Tono ocasionado por la secreción basal de adrenalina y noradrenalina en la médula suprarrenal
La velocidad normal de la secreción de adrenalina por la médula suprarrenal en condiciones de reposo está en torno a 0,2 μg/kg/min y para la noradrenalina se sitúa alrededor de 0,05 μg/kg/min.
Estas cantidades son considerables; en efecto, bastan para mantener la presión arterial casi normal incluso si se eliminan todas las vías simpáticas directas que llegan al aparato cardiovascular. Por tanto, resulta evidente que gran parte del tono global presente en el sistema nervioso simpático deriva
de la secreción basal de adrenalina y noradrenalina, además del tono resultante de la estimulación simpática directa.
Efecto de la pérdida de tono simpático o parasimpático después de la denervación Nada más cortar un nervio simpático o parasimpático, el órgano inervado pierde su tono respectivo.
Por ejemplo, en muchos vasos sanguíneos, la sección de los nervios simpáticos da lugar a una vasodilatación sustancial en un plazo de 5 a 30 s. Sin embargo, en cuestión de minutos, horas, días o
semanas, aumenta el tono intrínseco en el músculo liso vascular, es decir, el tono más alto originado por la fuerza contráctil en el músculo liso no como resultado de la estimulación simpática sino de
adaptaciones químicas experimentadas por las propias fibras del músculo liso. Este tono intrínseco acaba por restablecer casi una vasoconstricción normal.
En la mayoría del resto de órganos efectores suceden básicamente los mismos efectos siempre que desaparece el tono simpático o parasimpático. Es decir, poco después se produce una compensación intrínseca para devolver el funcionamiento del órgano casi hasta su nivel basal normal. Sin embargo, en el sistema parasimpático, este fenómeno de compensación a veces tarda muchos meses en darse.
Por ejemplo, la pérdida del tono parasimpático en el corazón después de una vagotomía cardíaca acelera la frecuencia cardíaca hasta 160 latidos/min en el perro, y esta variable todavía seguirá parcialmente elevada 6 meses más tarde.

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar