
la corriente eléctrica también se propaga desde el corazón hacia los tejidos adyacentes que lo rodean. Una pequeña parte de la corriente se propaga
hacia la superficie corporal. Si se colocan electrodos en la piel en lados opuestos del corazón se pueden registrar los potenciales eléctricos que se generan por la corriente; el registro se conoce como electrocardiograma (ECG)

Características del electrocardiograma normal
El ECG normal (v. fig. 11-1) está formado por una onda P, un complejo QRS y una onda T. Con frecuencia, aunque no siempre, el complejo QRS está formado por tres ondas separadas: la onda Q, la onda R y la onda S.
La onda P está producida por los potenciales eléctricos que se generan cuando se despolarizan las aurículas antes del comienzo de la contracción auricular. El complejo QRS está formado por los potenciales que se generan cuando se despolarizan los ventrículos antes de su contracción, es decir, a
medida que la onda de despolarización se propaga por los ventrículos. Por tanto, tanto la onda P como los componentes del complejo QRS son las ondas de despolarización.
La onda T está producida por los potenciales que se generan cuando los ventrículos se recuperan del estado de despolarización. Este proceso normalmente aparece en el músculo ventricular entre 0,25 y 0,35 s después de la despolarización. La onda T se conoce como onda de repolarización.
Así, el ECG está formado por ondas tanto de despolarización como de repolarización. La distinción entre ondas de despolarización y ondas de repolarización es tan importante en electrocardiografía que requiere una aclaración adicional.
Ondas de despolarización frente a ondas de repolarización
Durante la despolarización el potencial negativo normal del interior de la fibra se invierte y se hace ligeramente positivo en el interior y negativo en el exterior.

En la figura A, la despolarización, que se indica por las cargas positivas de color rojo del interior y las cargas negativas de color rojo del exterior, se dirige desde la izquierda hacia la derecha. La primera mitad de la fibra ya se ha despolarizado, mientras que la mitad restante sigue polarizada. Por tanto, el electrodo izquierdo del exterior de la fibra está en una zona de negatividad, y
el electrodo derecho está en una zona de positividad, lo que hace que el medidor registre un valor positivo. A la derecha de la fibra muscular se muestra un registro de los cambios de potencial entre los dos electrodos, que se registran con un medidor de registro de alta velocidad.
cuando la despolarización ha alcanzado la marca intermedia el registro ha
aumentado hasta un valor positivo máximo.
En la figura B la despolarización se ha propagado por toda la fibra muscular, y el registro de la derecha ha vuelto a la línea basal de cero porque los dos electrodos ahora están en zonas de igual negatividad. La onda completa es una onda de despolarización porque se debe a la propagación de la
despolarización a lo largo de la membrana de la fibra muscular.
La figura C muestra la mitad de la repolarización de la misma fibra muscular, de modo que vuelve la positividad al exterior de la fibra. En este punto el electrodo izquierdo está en una zona de positividad y el electrodo derecho está en una zona de negatividad. Esta polaridad es opuesta a la
polaridad de la figura A. Por tanto, el registro, que se muestra a la derecha, se hace negativo.
En la figura D la fibra muscular se ha repolarizado completamente, y los dos electrodos están ahora en zonas de positividad, de modo que no se registra ninguna diferencia de potencial entre ellos.
Por tanto, en el registro de la derecha el potencial vuelve una vez más a cero. Esta onda negativa completa es una onda de repolarización porque se debe a la propagación de la repolarización a lo largo de la membrana de la fibra muscular.
Relación del potencial de acción monofásico del músculo ventricular con las ondas QRS y T del electrocardiograma estándar
un potencial de acción monofásico registrado con un microelectrodo insertado en el interior de una fibra muscular ventricular única. El ascenso de este potencial de acción está producido por la despolarización, y la
vuelta del potencial al nivel basal está producida por la repolarización

Relación de la contracción auricular y ventricular con las ondas del electrocardiograma
Antes de que se pueda producir la contracción del músculo, la despolarización se debe propagar por todo el músculo para iniciar los procesos químicos de la contracción. La onda P se produce al comienzo de la contracción de las aurículas y el complejo QRS de ondas se produce al comienzo de la contracción de los ventrículos. Los ventrículos siguen
contraídos hasta después de que se haya producido la repolarización, es decir, hasta después del final de la onda T.
Las aurículas se repolarizan aproximadamente 0,15 a 0,2 s después de la finalización de la onda P, lo que coincide aproximadamente con el momento en el que se registra el complejo QRS en el ECG.
Por tanto, la onda de repolarización auricular, conocida como onda T auricular, habitualmente está oscurecida por el complejo QRS, que es mucho mayor. Por este motivo raras veces se observa la onda T auricular en el ECG.
La onda de repolarización ventricular es la onda T del ECG normal. Habitualmente el músculo ventricular comienza a repolarizarse en algunas fibras aproximadamente 0,2 s después del comienzo de la onda de despolarización (el complejo QRS), pero en muchas otras fibras tarda hasta 0,35 s. Así, el proceso de repolarización ventricular se extiende a lo largo de un período prolongado, de aproximadamente 0,15 s. Por este motivo la onda T del ECG normal es una onda prolongada, aunque el voltaje de la onda T es mucho menor que el voltaje del complejo QRS, en parte debido a esta duración prolongada.
Calibración del voltaje y el tiempo del electrocardiograma
Todos los registros de los ECG se hacen con líneas de calibración adecuadas sobre el papel de registro. Estas líneas de calibración pueden estar ya señaladas en el papel, como ocurre cuando se utiliza un registrador de pluma, o se registran en el papel al mismo tiempo que se registra el ECG,
como en los tipos fotográficos de electrocardiógrafos.
Voltajes normales en el electrocardiograma
Los voltajes de las ondas que se registran en el ECG normal dependen de la manera en la que se aplican los electrodos a la superficie del cuerpo y de la proximidad de los electrodos al corazón.
Cuando un electrodo está colocado directamente sobre los ventrículos y un segundo electrodo está localizado en otra localización del cuerpo alejada del corazón, el voltaje del complejo QRS puede ser de hasta 3 a 4 mV. Incluso este voltaje es pequeño en comparación con el potencial de acción
monofásico de 110 mV que se registra directamente en la membrana del músculo cardíaco. Cuando los ECG se registran con electrodos en los dos brazos o en un brazo y una pierna, el voltaje en el complejo QRS habitualmente es de 1 a 1,5 mV desde el punto más elevado de la onda R hasta el punto más profundo de la onda S; el voltaje de la onda P está entre 0,1 y 0,3 mV, y el de la onda T está entre 0,2 y 0,3 mV.
Intervalo P-Q o P-R
El tiempo que transcurre entre el comienzo de la onda P y el comienzo del complejo QRS es el intervalo que hay entre el inicio de la excitación eléctrica de las aurículas y el inicio de la excitación de los ventrículos. Este período se denomina intervalo P-Q. El intervalo P-Q normal es de aproximadamente 0,16 s. (Con frecuencia este intervalo se denomina intervalo P-R porque es
probable que no haya onda Q.)
Intervalo Q-T
La contracción del ventrículo dura casi desde el comienzo de la onda Q (onda R si no hay onda Q) hasta el final de la onda T. Este intervalo se denomina intervalo Q-T y habitualmente es de aproximadamente 0,35 s.
Determinación de la frecuencia del latido cardíaco a partir del electrocardiograma.
La frecuencia del latido cardíaco se puede determinar fácilmente a partir del ECG porque la frecuencia cardíaca es el recíproco del intervalo de tiempo entre dos latidos cardíacos sucesivos. Si el intervalo entre dos latidos, que se determina a partir de las líneas de calibración del tiempo, es de 1 s, la frecuencia cardíaca es de 60 latidos/min. El intervalo normal entre dos complejos QRS sucesivos en una persona adulta es de aproximadamente 0,83 s, lo que corresponde a una frecuencia cardíaca de 60/0,83 veces por minuto, o 72 latidos/mi.
Flujo de corriente alrededor del corazón durante el ciclo cardíaco
Registro de potenciales eléctricos a partir de una masa parcialmente despolarizada de músculo cardíaco sincitial
Flujo de corrientes eléctricas en el tórax alrededor del corazón
La imagen inferior muestra el músculo ventricular situado en el interior del tórax. Incluso los pulmones, aunque están llenos de aire en su mayor parte, conducen la electricidad en una magnitud sorprendente, y los líquidos de los demás tejidos que rodean el corazón conducen la electricidad incluso con más facilidad. Por tanto, el corazón realmente está suspendido en un medio conductor.
Cuando una porción de los ventrículos se despolariza y, por tanto, se hace electronegativa en relación con el resto, la corriente eléctrica fluye desde la zona despolarizada hacia la zona polarizada en rutas sinuosas largas

la primera zona de los ventrículos a la que llega el impulso cardíaco es el tabique, y poco después se propaga a la superficie interna del resto de la masa de los ventrículos, como se muestra por las zonas rojas y los signos
negativos.
Este proceso hace que las zonas internas de los ventrículos sean
electronegativas y que las paredes externas de los ventrículos sean electropositivas, de modo que la corriente eléctrica fluye a través de los líquidos que rodean los ventrículos en trayectos elípticos, como señalan las flechas curvas de la figura. Si se realiza el promedio algebraico de todas las líneas de flujo de corriente (las líneas elípticas) se encuentra que el flujo medio de corriente tiene negatividad hacia la base del corazón y positividad hacia la punta.
Durante la mayor parte del resto del proceso de despolarización la corriente también sigue fluyendo en esta misma dirección, mientras que la despolarización se propaga desde la superficie endocárdica hacia el exterior a través de la masa del músculo ventricular. Después, inmediatamente
antes de que la despolarización haya completado su trayecto a través de los ventrículos, la dirección media del flujo de corriente se invierte durante aproximadamente 0,01 s, fluyendo desde la punta ventricular hacia la base, porque la última parte del corazón que se despolariza son las paredes
externas de los ventrículos cerca de la base del corazón.
Así, en los ventrículos del corazón normal la corriente fluye desde las zonas negativas a las positivas principalmente en una dirección que va desde la base del corazón hacia la punta durante casi todo el ciclo de despolarización, excepto al final.
Derivaciones electrocardiográficas
Tres derivaciones bipolares de las extremidades
las conexiones eléctricas entre las extremidades del paciente y el
electrocardiógrafo para registrar ECG de las denominadas derivaciones bipolares estándar de las extremidades. El término «bipolar» significa que el electrocardiograma se registra a partir de dos electrodos que están localizados en lados diferentes del corazón, en este caso en las extremidades.
Así, una «derivación» no es un único cable que procede del cuerpo, sino una combinación de dos cables y sus electrodos para formar un circuito completo entre el cuerpo y el electrocardiógrafo. En cada uno de los casos el electrocardiógrafo se representa en el diagrama mediante un medidor
eléctrico, aunque el electrocardiógrafo real es un sistema informático de alta velocidad con una pantalla electrónica.

Derivación I
Cuando se registra la derivación I, el terminal negativo del electrocardiógrafo está conectado al brazo derecho y el terminal positivo al brazo izquierdo. Por tanto, cuando el punto en el que el brazo derecho se conecta con el tórax es electronegativo respecto al punto en el que se conecta el brazo
izquierdo el electrocardiógrafo registra una señal positiva, es decir, por encima de la línea de voltaje cero del ECG. Cuando ocurre lo contrario el electrocardiógrafo registra una señal por debajo de la línea.
Derivación II
Para registrar la derivación II de las extremidades, el terminal negativo del electrocardiógrafo se conecta al brazo derecho y el terminal positivo a la pierna izquierda. Por tanto, cuando el brazo derecho es negativo respecto a la pierna izquierda, el electrocardiógrafo registra una señal positiva.
Derivación III
Para registrar la derivación III de las extremidades, el terminal negativo del electrocardiógrafo se conecta al brazo izquierdo y el terminal positivo a la pierna izquierda. Esta configuración significa que el electrocardiógrafo registra una señal positiva cuando el brazo izquierdo es negativo respecto a
la pierna izquierda.
Triángulo de Einthoven
Se dibuja un triángulo, denominado triángulo de Einthoven, alrededor de la zona del corazón. Este diagrama ilustra que los dos brazos y la pierna izquierda forman vértices de un triángulo que rodea el corazón. Los dos vértices de la parte superior del triángulo representan los puntos en los que los dos brazos se conectan eléctricamente a los líquidos que rodean el corazón y el vértice izquierdo es el punto en el que la pierna izquierda se conecta a los líquidos.

Ley de Einthoven
La ley de Einthoven afirma que si los ECG se registran simultáneamente en las tres derivaciones de las extremidades, la suma de los potenciales registrados en las derivaciones I y III debe ser igual al potencial en la derivación II.
En otras palabras, si en cualquier momento dado se conocen los potenciales eléctricos de dos cualesquiera de las tres derivaciones electrocardiográficas bipolares de las extremidades, se puede determinar la tercera simplemente sumando las dos primeras. Ha de tenerse en cuenta, sin embargo, que se deben observar los signos positivos y negativos de las diferentes derivaciones cuando se haga esta suma.
Derivaciones del tórax (derivaciones precordiales)
Con frecuencia se registran ECG con un electrodo situado en la superficie anterior del tórax directamente sobre el corazón Este electrodo se conecta al terminal positivo del electrocardiógrafo, y el electrodo negativo, denominado electrodo indiferente, se conecta a través de resistencias eléctricas iguales al brazo derecho, al brazo izquierdo y a la pierna izquierda al mismo tiempo, como también se muestra en la figura. Habitualmente se registran seis derivaciones estándar del tórax, una cada vez, desde la pared torácica anterior, de modo que el electrodo del tórax se coloca secuencialmente en los seis puntos que se muestran en el diagrama. Los diferentes registros se conocen como derivaciones V1, V2, V3, V4, V5 y V6.
Derivaciones unipolares ampliadas de las extremidades
Otro sistema de derivaciones que se utiliza mucho es la derivación unipolar ampliada de las extremidades. En este tipo de registro, dos de las extremidades se conectan mediante resistencias eléctricas al terminal negativo del electrocardiógrafo, y la tercera extremidad se conecta al terminal positivo. Cuando el terminal positivo está en el brazo derecho la derivación se conoce como derivación aVR, cuando está en el brazo izquierdo es la derivación aVL y cuando está en la pierna izquierda es la derivación aVF.