Capítulo 77. Hormonas metabólicas y tiroideas

La glándula tiroides, situada justo por debajo de la laringe y a ambos lados y por delante de la tráquea, es una de las glándulas endocrinas más grandes, con un peso que oscila entre 15 y 20 g en los adultos sanos. El tiroides secreta dos hormonas importantes, la tiroxina y la triyodotironina, conocidas a menudo como T4 y T3, respectivamente. Ambas inducen un notable aumento del metabolismo del organismo. La ausencia completa de secreción tiroidea provoca con frecuencia descensos metabólicos de hasta un 40-50% inferiores al valor normal, mientras que la secreción excesiva incrementa el metabolismo en hasta el 60-100% por encima de lo normal. La secreción tiroidea está controlada por la tirotropina (TSH), secretada por la adenohipófisis.

Síntesis y secreción de las hormonas metabólicas tiroideas

Alrededor del 93% de las hormonas con actividad metabólica secretadas por la glándula tiroides corresponde a tiroxina y el 7% restante, a triyodotironina. No obstante, con el tiempo, casi toda la tiroxina se convierte en triyodotironina en los tejidos, por lo que ambas desempeñan funciones importantes. Estas funciones son cualitativamente similares, aunque difieren en la rapidez y la intensidad de la acción. La triyodotironina es unas cuatro veces más potente que la tiroxina, si bien se detecta una cantidad mucho menor en la sangre y su duración es más breve.

Anatomía fisiológica de la glándula tiroides

La glándula tiroides se compone de un elevado número de folículos cerrados (100 a 300 μm de diámetro), que están repletos de una sustancia secretora denominada coloide y revestidos por células epiteliales cúbicas que secretan a la luz de los folículos. El componente principal del coloide es una glucoproteína de gran tamaño, la tiroglobulina, cuya molécula contiene las hormonas tiroideas. Cuando la secreción se encuentra en los folículos, la sangre debe absorberla de nuevo a través del epitelio folicular para que pueda actuar en el organismo.

Para formar una cantidad normal de tiroxina se precisan al año unos 50 mg de yodo (ingerido en forma de yoduros) o el equivalente a 1 mg/semana. Para impedir la deficiencia de yodo, se añade una parte de yoduro sódico por cada 100.000 partes de cloruro sódico a la sal de mesa común. Los yoduros ingeridos por vía oral se absorben desde el tubo digestivo hasta la sangre de la misma forma que los cloruros. En condiciones normales, la mayor parte se excreta con rapidez por vía renal, pero siempre después de que las células tiroideas hayan retirado selectivamente una quinta parte de la sangre circulante y la hayan empleado en la síntesis de las hormonas tiroideas.

Bomba de yoduro: el simportador del yoduro de sodio (atrapamiento de yoduro) La primera etapa de la formación de las hormonas tiroideas consiste en el transporte de los yoduros desde la sangre hasta las células y los folículos de la glándula tiroides. La membrana basal de estas células posee la capacidad específica de bombear de forma activa el yoduro al interior celular. Este bombeo se consigue mediante la acción de un simportador del yoduro de sodio, que cotransporta el ion yoduro a lo largo de dos iones sodio a través de la membrana basolateral (plasma) a la célula. La energía para el transporte del yoduro en contra de un gradiente de concentración proviene de la bomba de sodio-potasio-adenosina trifosfatasa (ATPasa), que bombea sodio al exterior de la célula, con lo que establece una baja concentración de sodio intracelular y un gradiente para facilitar la difusión de sodio en la célula.

En una glándula normal, la bomba de yoduro concentra esta sustancia hasta que su concentración supera en 30 veces la de la sangre. Cuando la glándula tiroides alcanza su máxima actividad, la relación entre ambas concentraciones puede elevarse hasta 250 veces. El atrapamiento de yoduro por la glándula tiroides depende de diversos factores, el más importante de los cuales es la concentración de TSH; esta hormona estimula la actividad de la bomba de yoduro en las células tiroideas, mientras que la hipofisectomía la disminuye. El yoduro es transportado fuera de las células tiroideas a través de la membrana apical hacia el folículo por una molécula de contratransporte de cloruro-yoduro denominada pendrina.

Tiroglobulina y química de la formación de tiroxina y triyodotironina.

Formación y secreción de tiroglobulina por las células tiroideas Las células tiroideas constituyen un ejemplo típico de células glandulares secretoras de proteínas. El retículo endoplásmico y el aparato de Golgi sintetizan y secretan hacia los folículos una gran molécula glucoproteica denominada tiroglobulina, con un peso molecular aproximado de 335.000. Cada molécula de tiroglobulina contiene unas 70 moléculas del aminoácido tirosina, que es el sustrato principal que se combina con el yodo para dar lugar a las hormonas tiroideas. Así pues, las hormonas tiroideas se forman dentro de la molécula de tiroglobulina.

El primer paso crítico para la formación de las hormonas tiroideas consiste en la conversión de los iones yoduro en una forma oxidada del yodo, bien en yodo naciente (I 0 ), bien en I 3 – , que luego puede combinarse directamente con el aminoácido tirosina. La oxidación del yodo depende de la enzima peroxidasa y su peróxido de hidrógeno acompañante, que constituyen un potente sistema capaz de oxidar los yoduros. La peroxidasa se encuentra en la membrana apical de la célula o unida a ella, proporcionando así el yodo oxidado justo en el lugar de la célula donde la molécula de tiroglobulina abandona el aparato de Golgi y atraviesa la membrana celular hasta el coloide almacenado en la glándula tiroides. Cuando el sistema de la peroxidasa se bloquea o en los casos de ausencia congénita, la velocidad de formación de hormonas tiroideas disminuye hasta cero.

Yodación de la tirosina y formación de las hormonas tiroideas: «organificación» de la tiroglobulina La unión del yodo a la molécula de tiroglobulina recibe el nombre de organificación de la tiroglobulina. El yodo oxidado (incluso en forma molecular) se une directamente, aunque con lentitud, al aminoácido tirosina. No obstante, en las células tiroideas el yodo oxidado se asocia a la enzima tiroidea peroxidasa, que hace que el proceso tenga lugar en segundos o minutos. Por consiguiente, a medida que la tiroglobulina se libera del aparato de Golgi o se secreta al folículo a través de la membrana apical de la célula, el yodo se fija a alrededor de la sexta parte de las tirosinas contenidas en la molécula de tiroglobulina.

El principal producto hormonal de la reacción de acoplamiento es la molécula tiroxina (T4), que se forma cuando se unen dos moléculas de diyodotirosina; la tirosina forma parte aún de la molécula de tiroglobulina. En otras ocasiones, una molécula de monoyodotirosina se une con una de diyodotirosina para formar triyodotironina (T3), que representa alrededor de la quinceava parte del total final de hormonas. Se forman pequeñas cantidades de T3 inversa (RT3) mediante acoplamiento de diyodotirosina con monoyodotirosina, aunque la RT3 no parece tener importancia funcional en los seres humanos. Almacenamiento de la tiroglobulina La glándula tiroides es la única glándula endocrina que posee la capacidad de almacenar grandes cantidades de hormona. Una vez finalizada la síntesis de las hormonas tiroideas, cada molécula de tiroglobulina contiene hasta 30 moléculas de tiroxina y algunas de triyodotironina.

Liberación de tiroxina y triyodotironina del tiroides

La mayor parte de la tiroglobulina no se libera a la sangre circulante, sino que es preciso que la tiroxina y triyodotironina se escindan de la molécula de tiroglobulina; a continuación, ambas se secretan en forma libre. Este proceso tiene lugar por el siguiente mecanismo: la superficie apical de las células tiroideas emite extensiones en forma de seudópodos que rodean a pequeñas porciones del coloide, constituyendo vesículas de pinocitosis, que alcanzan la punta de la célula tiroidea. A continuación, los lisosomas del citoplasma celular se funden de inmediato con estas vesículas y forman otras vesículas digestivas que contienen enzimas procedentes de los lisosomas mezcladas con el coloide. Varias enzimas proteinasas digieren las moléculas de tiroglobulina, y liberan la tiroxina y la triyodotironina, que se difunden entonces a través de la base de la célula tiroidea, hacia los capilares circundantes, y de este modo pasan a la sangre. Parte de la tiroglobulina del coloide entra en la célula tiroidea por endocitosis después de su unión a la megalina, una proteína situada en la membrana luminal de las células. A continuación, el complejo megalina-tiroglobulina es transportado a través de la célula por transcitosis hasta la membrana basolateral, donde una parte de la megalina permanece unida a la tiroglobulina y es liberada en la sangre capilar. Alrededor de las tres cuartas partes de la tirosina yodada en la tiroglobulina nunca se convierten en hormona tiroidea, sino que permanecen como monoyodotirosina y diyodotirosina.

Transporte de tiroxina y triyodotironina a los tejidos La tiroxina y la triyodotironina están unidas a proteínas plasmáticas Cuando acceden a la sangre, más del 99% de la tiroxina y la triyodotironina se combina de inmediato con diversas proteínas plasmáticas, todas ellas sintetizadas por el hígado. Estas proteínas son, ante todo, la globulina fijadora de la tiroxina y, en menor medida, la prealbúmina y la albúmina fijadora de la tiroxina. La tiroxina y la triyodotironina se liberan lentamente a las células de los tejidos Debido a la gran afinidad de las proteínas de unión plasmáticas por las hormonas tiroideas, estas sustancias, en concreto la tiroxina, se liberan con lentitud a las células de los tejidos. La mitad de la tiroxina presente en la sangre se libera a las células de los tejidos cada 6 días aproximadamente, mientras que la mitad de la triyodotironina, dada su menor afinidad, tarda 1 día en llegar a las células.

Deja un comentario

Diseña un sitio como este con WordPress.com
Comenzar